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PREFACE

This thesis is a continuation of the work done by Yeakel
in the control of linear periodic systems, While specific
cases are looked at in this study, the techniques are
applicable to linear periodic systems in general. This
field is Jjust beginning to be explored in depth. With the
advent of computers to perform many of the tedious numerical
integrations the problem becomes workable., With this thesis
I hope to add one more building block to this field., More
work needs to be done before we can fully understand the
nature of periodic systems, and how to control them., By
filling in all of the bits and pieces, eventually the field
will be conquered.

Much of this thesis work was done on the computer, a tool
I was not completely comfortable with., I would like to thank
all the people who helped me understand the operation of the
computer system, especially Dr, William Wiesel, and Captain
Hugh Briggs. I would also like to thank the members of my
faculty board, Captain DeWispelare, Major Wallace, and Dr.
Wiesel, Most importantly I would like to thank my adviser
Dr. Robert Calico for the guidance and insight he has given

me this past year,
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ABSTRACT

\‘L

The attitude of a spinning symmetric satellite in an
elliptical orbit was analyzed. The linearized equations
were formed from which the stability was determined using
Floquet theory. The majority of satellite configurations
examined exhibited two unstable modes. Contrcl laws using
pole placement techniques were implemented which stabilized
the satellite. A scaler control provided stability but did
not allow for exact pole placement of the controlled system.
Multiple input control gave exact pole placement but required

complicated time dependent gains.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Since the beginning of space flight in the late 1950's
designers have been concerned with maintaining the attitude
of their satellite with respect to some fixed reference.
Today this is still a major concern, as the use of earth
orbiting satellites is vital not only for weather and
communications problems, but alsc for national security
interests, The need to keep an unmanned satellite "looking"
at a particular point on the earth's surface, whether it be
a storm front or a foreign military installation, is an
important problem facing satellite designers. Various methods
have been used in the past to achieve this "line of sight"
precision, involving both passive and active control mech-
anisms. For satellites in nearly circular orbits a gravity
gradient stabilization has been used. This method has many
restrictions on satellite design and also requires nearly
circular orbits. Gravity gradient stabilization yields very
low natural frequencies, and hence any disturbances take a
long time to die out; not a good condition for precision
serveillence. More active attitude control devises are used
such as magnetic torquers, mass movement and momentum exchange
devises, and Jet thrusters. Each has its own advantages and
disadvantages depending on the mission reqirements, The most
important factor in selecting a control devise, and for the

entire satellite package, is weight. The lighter the overall
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system is, the higher orbit it can be put into, and the loneer
it will stay in space. Therefore the lighter the control
system the more weieht is available for payload., The more
payload implies a higher degree of mission accomplishment or
sophistication.

One active control devise long employed is the syroscope.
A gyroscope, havine a large amount of angular momentum with
torgue free motion, results in a nearly constant anrcular
momentum vector, Thus it is ideal for an attitude reference
devise, Cyros have long been used for aircraft navigation
and so their use in spacecraft seemed natural, To simplify
the problem the idea became to make the entire satellite
gyroscopic by spinning it about some axis. As early as 1963
Xane and Shippy investigated the stability of a spinning
satellite in a circular orbit, (5;111). This yielded equations
which were nonlinear and nonautonomous. Later in 1266 Kane
and Barba investigated the problem of a symmetric satellite
in an elliptical orbit, spinning about its axis of inertial
symmetry, (4;402), Again the system was nonlinear and non-
autonomous,

In both cases the equations were linearized about an
equilibrium point giving linear equations with periodic
coefficients whose stability was checked using Floquet
theory. In the case of a satellite in an elliptical orbit
the stability was found to be dependent on the inertia prop-
erties, the orbit eccentricity, and the spin rate of the

satellite,
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As the need for more precise line of sight capability has
increased, the use of gravity gradient stabilizaticn and
other schemes overly restrictive of satellite design, has
become undesireable, Some sort of on board control system,
or autopilot is needed. For the case of the symmetric spin-
ning satellite in elliptical orbit, many of the satellite
configurations are inherently unstable. As the eccentricity
is increased more of the cases become unstable, A control
scheme needs to be implemented so that these unstable con-
figurations ean be made stable and thus operational. The
linearized system of equations describing this case (Kane and
Barba) have periodic coefficients and so classical control
techniques used for systems with constant coefficients are
not directly applicable and must be modified, Very little
work has been done on control of periocdic systems. Shelton
developed a control scheme for pericdic systems, in his thesis,
for a satellite in orbit about the earth moon Lagrange point
L4, (Ref;9) Yeakel used the same principles in develcring a
control scheme for the case of an unsymmetric satellite in a
circular orbit, and a symmetric satellite in an elliptical
orbit. (Ref;11)

This control scheme involves transforming the state variatles
to modal variables so the designer can look at the individual
modes and their respective stability. Control terms can then
be applied to the individual modes. The control terms are
based on feedback of the selected modes, modified by selected

gains., In Shelton's and Yeakel's work the controller was
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designed to stabilize a system where one mode was unstable,

Many of the cases presented in this study have two unstable
modes. This makes the control a2 more ~<uplicated process due
to the coupling of the unstable modes. This results in
unpredictable results using the scaler control developed by
Shelton and Yeakel. The use of multiple input control for

a system with two unstable modes is therefore developed. This
control scheme gives predictable results, but has its own
special drawbacks, namely complicated gains,

This study addresses the case of a symmetric satellite in
an elliptical orbit, spinning about its axis of inertial
symmetry, where two modes are unstable. The stability is
dependent on the eccentricity, inertia properties, and the
spin rate of the satellite, and the majority of cases involve
two unstable modes, Thus the ability to adequately control
such a case is extremely important. It is the purpose of
this study to investigate both scaler control schemes and

multiple input control schemes in stabilizing such a system

with two unstable modes.
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CHAPTER 2

THECRY

In this chap*“er the equations of motion of an inertially
symmetric satellite in an elliptical orbit about the earth
are developed., The satellite is spinning about its axis of
inertial symmetry, Also the equations descriting the attitude
motion of the satellite are presented. These attitude equa-
tions will be linearized about an equilibrium point to des-
cribe the system in a conventional linear form. The system
is time periodic due to the nature of the orbital motiorn,
therefore Floquet theory can be used to make a statement
about the stability of the attitude motion. An unstable
system can be made stable by inserting a feedback control term
in the model. This control term can either be scaler control

or multiple input control, Both cases are develcred.

EQUATIONS OF MOTION

The development that follows is taken from Kane and Barba
(4;402). Two basic equations describe the trajectory of a
satellite 1in orbit about a spherically symmetric attracting
body. These equations are developed in any introductory

astrodynamics text (10;31). The equations are:

TR - N (2.1)

-




r25 = azn\/—l__-——e—z_ (2.2)
where
n = 2x/T (2.3)
and where T is the period of the orbit. The orbital elements;

r,v,a, and e are shown in Figure 2.1;

k = :

Figure 2,1 Elliptical Orbit Elements
The variables may be nondimensionalized by changing to a

new system such that:

r
r = nt ¢ = a (2.4)

By rearranging equation (2.2),

. azn V1 - e2

vV = > (2.5)

r

substituting this into equation (2.1) gives;
4 2 2 2.3

an (1 -e%) n_a_ _ q (2.6)

r - 3 + 5




Now using the nondimensional variables and denoting diff-

erentiation with respect to r by primes:

(- 1) .1

73 £2 =0 (2.7)

rl|+

The initial conditions for this differential equation are

found by assuming the satellite starts at perigee, therefore;

ry = a(l - e) fp =0
or, (2.8)

$(0) =1 - e ¢'(0) =0

Nondimensionalizing equation (2.5) gives;

(2.9)

yl'

(2.10)

_ =2 V1 - e® ¢
;3

It is worth noting that ¢ is a periodic function of r,

Now the equations to describe the attitude motion of the
satellite can be developed. First an orbital reference
frame A is defined, Frame A is such that Al points outward
along the orbit radius r, A2 is perpendicular to A1 in the
orbital plane such that at perigee the satellite is moving
only in tne positive A2 direction, and A3 is perpendicular
to both Al and A2, pointing out of the orbital plane. A body

axis frame X is obtained by means of a 1-2-3 rotation through
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the angles 01, 02, and 85 Since the satellite is assumed to
be inertially symmetric a nodeal axis system C is intrcduced
which is obtained from A by means of a 1-2 rotation through

01 and 02. See Figure 2.2,

A
Bz p 643

Figure 2,2 1-2~3 Rotation
Expressing the inertial angular velocity components in the C

frame, including the orbital rate VAS;

wy; = 01c0502 - icosolsino2
wp = 8, + vsing, (2.11)
w3 = élsino2 + é3 + écos&lcosoa

The moment equation (7;468) gives;

c
R - %E'[IICIBEilc * [Cz"i] xlilclBaTilc

with the applied moments being (4;403);

8




M, =0

1 2
M, = 3?3(1 - J)81n02c0502 (2.13)
My = 0

Now from Euler's equations;

J -1 M

@) + ( =5 Jwywy = 71

ay + ( L ; J )wlw3 = %2 (2.14)
I -1 M

ay + ( =5~ Jwgu, = 53

where the at's are the angular accelerations and the I's and

Jt's are defined from the mass moment of inertia matrix;

(2.15)

p——
H
[R—
Q
]
OOH
o O
< OO0

for a symmetric satellite. Defining an inertia parameter K

such that;

K = (2.186)

The inertia properties can be fully described in this one

parameter. The acceleration terms a, are found using the

i
equation;

c B=i

Be
wl x %% (2.17)

o1 + C;i

Rl
]
o

4
at

&l

which given in component form are;




a; = -vcos%§in02+ u(olsinolsino2 - ogcosolcoso2 + 0, sinol)

+ 01c0302 - olaasinoa + 8.0

2°3 :
. ., . . .. {
a, = usinol + v(alcoso1 + olcosolsinoz) +8, -0301 cosa2 :
(2.18)
ay = vC050100502 - yalsinolcosog - y9200501$in02 +

-01 sino2 + 0102c0s02 + 03

e u—
PO PR 4

Now having solved for the a's, equation (2.14) becomes;

a, + Kw1w3 =0
ap = Kajwy = -3n°Ksing,cos0,/ ° (2.19)
az ~ 0
Consider the motion such that €; =6, = 0 and @~ r+w 5t v
where wy = n( 1 +a) with a a constant representing the spin *
rate about the C3 axis. Under these conditions the accelera-
tions a, = 0 and the external moments Mi= 0. This represents

an equilibrium point with the C, axis remaining perpendicular

3 F
to the orbital plane. Now if the satellite is perturbed from
this equilibrium state, there is no guarantee the motion will

return the satellite to this orientation. To determine the

stability of the satellite, state variables are defined such

that;

o

X, = e X, = 6, Xy = ei X, = Gé (2.20)

Linearizing about the equilibrium point described above, using

10
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equations 2,11, 2,18, and 2,19, gives the perturbation

equations in state vector form;

X! = [Al x
where (2.21)
T - [e 0,, 01, 0]
10 950 694 6,
hence
- 4 3
’ei‘ 0 0 1 o ] e,
)
' 92’ o N £ (2.22)
t .
o1 Agr " 0 Rgaleg
L - '
| 63 ] L"" Agp B34 © 165,
and
Ajg = Ao = Ry = Bpg = Apy = Apg = Agg = Ay, =0
Ajg = Ay =1
A31 = -v'(eé + Kot + Keé)
Aaa = -A41 = y" (2.23)
- v - ' = -
Ang = v eé K(v' + eé Ayq
3
Agy = Ay = 3K/ ¢

This expresses the A matrix in terms of the variables /, ",
q;and {. The variables ¥ and ¥' can be eliminated from the
matrix by noting equations (2.9) and (2.10). 63 can be

eliminated by noting the third of equation (2.14); a; =0

which when linearized is;

v o+ eé = constant (2,24)

11
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let that constant be (a+ 1 ), then;

0y = (1+a) - “l—§53— (2.25)

Making these substitutions in the A matrix, the elements are
only functions of the variables { and its derivative {'.

Additionally the elements depend upon X, a, and e, srecifically;

Agg ®Ayp = Ay S Ay = Ayy = Apg = Ang = Ay, =0
A1g =84 =1
17
Agp = (1 =2 S (14a)(1+r)(1 -2 072
- 2ve=3,., _ _ (2.26)
A32" 2( 1-8 )f g- = A41
- 2)4"2 7 =
Ay, = 2( 1 - e“)2¢ - (1 +a)(1 +K)Y = -Aun
_ o F=3
Agp = Ay = 3K¢
FLOQUET THEORY
It is important to note the A matrix is periodic
with period T, that is;
A(?) = A(r+ T ) (2.27)

where T is the pericd of one orbit, The stability of the
motion can now be analyzed using Floquet theory. Floquet

theory is used because the matrix A 1s a time periodic

12 }




function and does not lend itself to the same stability
analysis as that of a constant A matrix. The fundamental
matrix for this system must satisfy the matrix differential

equation;

@' (7) = A(r)®(7) (2.28)

This ¢ is one fundamental matrix of the system. Floquet theory

states that the & {(r) may be written in the form;

rr

&(7) = P(r) e (2.29)

where P(7) is a periodic matrix with the same period as the
original system, and the matrix I' is a constant matrix, It
is desireable to have the T matrix in diagonal form, (i.e.
Jordan form). This may be done by means of a similarity
transformation and a new fundamental matrix ¥ is therefore
given by;

v(r) = F(r) &7 (2.30)

F(r) is periodic such that,

F(r) = F(r+ T) (2.31)

and J is the Jordan form of T ,

Now returning to the form of equation (2.29) to write;

®(r +T7)=pP(ra1) LT +T) (2.32)

13
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but
P(r) =P(r + T ) (2.33)
therefore,
d( 1+ T ) = P(r) eP?eFT = ¢(r1) ePT (2.34)
or
(7 + T ) =d(r) C (2.35)

Here C is a constant matrix called the monodromy matrix., The
eigenvalues of the T matrix are called the characteristic
exponents, ki. The eigenvalues of C are called the character-
istic multipliers pi. By letting r = C the monodromy matrix

can readily be found;

s lo)e(T) = ¢ (2.36)

If & is the principle fundamental matrix;

®(0) =1 (2.37)
& can be solved numerically by recalling equation (2.28)
and given the initial conditions (2.37).
The eigenvalues of the monodromy matrix are related to the

characteristic exponents by;

inp (2.38)

1
A, = 1

i°T

The stability of the system is determined by the character-

istic exponents., If all of the characteristic exponents are




ae

less than zero the system is stable. If just one of the
characteristic exponents is greater than zero the system is
unstable. For the case where the characteristic multipliers

are complex, the relationship between them and the character-

istic exponents is;

1
"1"( Inr, + Jarge,) (2.39)

>
1]

where

]
[}

. Re( )2 + Im(n.)2 |
N \/ g t (2,40)

; arg p, = arctan( Im(pi)/Re(pi))

In this case all real parts of the characteristic exponents

must be nonpositive for stability. A positive real part
means the system is unstable,

The system stability can be determined from the monodromy
matrix, tut the periodic solution matrix will be needed for
implementation of control., A solution to the original

system can be written as (3;234);

X(r) = ¢ (r ) 1(0)X(0) (2.41)

where ¥ is any fundamental matrix and x(0) is the initial

condition vector, assumed given. Using the fundamental

matrix of equation (2.30), and taking its inverse gives;

v () = 77 F~l(s) (2.42)

| where at r = O,




e e

o)

v~lo) = &2 Fl(o) = Fi(o) (2.43)

using this in equation (2.41);

X(r) = F(r) &7 F 1(0)x(0) (2.44)

It is important to note that F( r + T ) = F(r). 1In terms cf

the principle fundamental matrix x(r) may be expressed as;

X(r) = &(r)e 1(0)x(0) (2.45)
Evaluating at r = T,

X(T) = &(T) & 1(0)%(0) (2.46)

n

where from equation (2.36),

S(T)FL(0) =@(T) I =&(T) =C (2.47)

where C is the monodromy matrix. Evaluating equation (2.44)

at r = T and then equating to equation (2.46) gives;

r(1) 9T F 1(0)X(0) = Cx(0) (2.48)

or by rearranging,
F(T) ¢’ - C F(0) = 0 (2.49)

F(T) so equation (2.49)

Since F(r) is periodic, F(O)

becomes;

T (2.50)

]
ol

F(0) T - ¢ F(0)

16
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The matrix e‘IT is diagonal and hernce the individual columns

of the F(O) matrix can be written as;

pi?i(o) -C Fi(o) =0 (2,51)

with o, being the %'th diagonal element of e’T. Equation
(2.51) may be recognized as a basic eigenvalue problemn,

wWritten in a more familiar form;

[pI-c]'f(o) =0 (2.52)

Hence the F(0) matrix is a matrix whose columns are the

eigenvectors of the monodromy matrix C.

Referring to equation (2.30) again, taking the derivative

of ¢ with respect to r gives; i

Yr(r) = F'(r) e  + F(r) J e (2.53) |

Since ¥ is a fundamental matrix it must satisfy equation

(2.29), i.e.

v'(r) = A(r) ¥ () (2.54)

Using the expression for ¥ and ¢' in equation (2.%54) gives,

Jr Jr

Fi(r) e 4 F(r) J e = A(r) F(r) e (2.55)

By cancelling out the eJ' terms and rearraneing;

17
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F' = AF - FJ (2,56)

This equation along with the initial condition matrix found
in equation (2.52) czn be solved numerically for F(r),
Sumnmarizing the steps to determine the stability of the

svsten;

are as follows;
1) Determine the principle funcamental matrix ® by numericelly

integrating equation (2.28) with initiesl conditions

®(0) =1 (2.37)
P'(7) = A(7)®(7) (2.28)

2) Determine the monodrony matrix C from eguation (2.36)
o 1(0)B(T) = C (2.238)

3) Find the eigenvalues of the monodrecmy matrix C.pi, and
therefore the characteristic exponents xi by,

1 o

i

If all the Ai have negative real parts the system is stable,

otherwise it is unstable.

Summarizing the steps to determine the periodic F matrix

of equation (2,30) are as follows;




1) Find eigenvectors of the monodromy matrix from eguation

(2,52)., These form the initial conditions for the F matrix.
lp I-2¢C ]?(o) =0 (2.52) ‘
2) Solve eguation (2.56) for F by numerically integrating.

F' = AF - FJ (2.56)

Now all elements of the general solution form of equation

(2.30) are known.

Y(r) = F(r) & (2.30)

where J is the Jordan matrix, (7;267).
Equations (2.28) and (2.56) can be solved numerically,

given the initial conditions. The elements of the F matrix

are needed as functions of r and since they are periodic, may

be stored as Fourier coefficients.

e T

CONTROL THEORY

The modal control of linear constant coefficient systems
is well understood. The application of modal control for
linear periodic systems is however not well developed and is
the subject of this section. <Consider a change of state

variables from x to a new modal variable 7, given by;

X(r) = F(r)u(r) (2.57)

19
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where F(r) 1s the same matrix as in equation (2.30). Taking

the derivative of x with respect to r gives;
X' = F'n + Fy! (2.58)

Substituting equation (2.57) and (2.58) into the original

system of equations (2.21);

F'n + Fn' = AF7 (2.59)

By rearranging,

5 ' = Flary - Fipry (2.60)

Using equation (2.56) to change equaticn (2.60) to;

70 = [F7laF - Flar - F0) |7 (2.61)
or,
3 = [F'lAF - F7IAF + F-lFJ] 7 (2.62)
and finally, i
o= J7 (2.63)

This represents a much easier system to deal with since J is
a constant matrix. If all the characteristic exponents are
real and distinct, J is set to have elements only on the main
diagonal. If this is the case, the system described by equa-
tion (2.63) reduces toc n uncoupled ordinary differential
equations, hence the new 7 variables are called the modal

variables. Each L represents a different mode. The stabil-

20 : 1




ity of one mode is independent of the other modes. In the
state variables each mode ny participates in the overall
motion ¢f the system. If the characteristic exponents are
complex, J is put in block diagonal form, with the imaginary

varts on the off diagonal, In this case two of the modes

become coupled and the differential equations become more
involved.
The feedback control term added to the basic system,

changes the mathmatical model to look like;

X' = AX + Bu (2.64)

where B is a feedback aprlication matrix and u is the control
vector. Expressing this equation in mcdal variables yields;

1

W = Jn + FUBU (2.65)

The B matrix is used to show which variables the control

is applied. The control matrix B has the general form;

[¢c 0 ... 0O ]
O o ”> 00 O
B = (2~66)
By1 Pyoees Byy
L Dy Dopeee By

where the number of columns n is determined by the size of the

control vector u, The elements b are determined by the

13
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physical implementation of the control. The control matrix

B has four rows because the state variable has four elements.

The contreol vector defines which variables are fed back
and how much is fed back, hence u is defined as;
u = K(r)7 (2.€7)
where K(7) is a time dependent gain matrix of the form;
[ (r) Ky (7) ]
K () Kyp(r) Kyg(m) Koulr)
Ky (7)) Ko (r) K, () K,,(7)
K(7) = 21 22 23 24 (2.68)
| ¥n1 (7)) Kpp(7) Kpg(?) Knalm) |
The number of rows is an option of the designer and equals
the order of the control vector u.

For now a simple scaler control will bte demonstrated,

(n = 1). The B matrix will assumed to be; ,
§
0 |
0 !
1
Then the control term F L BG of equation (2.65) becomes;
[ ¢ £, £,,][0] [K K, K, K ] 7
11 “12 *13 *14 1 "2 f3 Pa ) ? L
a1 ., 1]° ‘
fa1 1 (2.70a)
L T4 eee Taq0 L1
22
e drim - b o eiosir & A e S A AT i




or

13 + T4
f + £
F1p7 = 23 24 [K K. X. K ]
e 4 r 1 Ko K5 Ky
33 34
| fa3 * Taq

where f represents the elements of the F inverse

i

]

(2.70b)

matrix,

Further multiplication and insertion into equation (2,65),

where Ri = f13 + f14 y gives;
[ K Ry +X KoRy K3Ry KRy
T K1R2 K2R2 + xa K3R2 K4R2
K1R3 K2R3 K3R3 + AB K4R3
K1R4 K2R4 K3R4 K4R4 + X4J

3

(2.71)

This represents the controlled system using scaler control,

- Suppose one mode is unstable, for example xl

is positive,

By choosing X, = K, = K, = 0, equation (2.71) reduces to;

3 4

’xl(fls +f,,)+Xx, 0O 0 0O 1
T Ky (£ + Tp4) A, 000

Kl(f33 + £3,) 0 Xa 0

.Kl(f43 + £4,) 0 0 Ay |

3]

(2.72)

Thus the three stable modes remain the same, and the unstable

mode can be changed by proper selection of Kl(f).

The differential equation for the first mode

" o= |K1(’)(f13(’) + £,(m)) + *1]"1

is;

(2.73)

TR e R




Using an integrating factor,

T
womexp [of Oy + RUDE0) 4 2 0))at] (2.74)

the solution of (2.73) is given by;

{T( (
N, =19 ex C + R(%))dt (2.75)
1 1, pfo

where here "1 is the initial value of My C is the constant
0

part of the exponential of equation (2,74), and the term

R(t) is the time varying part. Now by letting K, be a constant,
and expressing the compcnents of F inverse in Fourier series
form, with a constant and a time periodic part, equation (2.75) é
reduces to;

e (2.76)

with

C =\, +ak (2.77)

where a is the constant part of the Fourier series, Hence
by appropriately selected K such that C is less than zero
the stability of mode one is guaranteed,

Now suppose there is no constant part of the Fourier

series, or that it is too small to be realistically fed

back by a constant K. In this case a time varying gain can
be used to control the system. The integrating factor of
equation (2.74) shows a K(7) times a Fourier series. Suppose
the first cosine term of the Fourier series is large enough

to modify the mode. A constant part can be created by making

24
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the gain;

arr
T

Kl(f) = K, cos (2.78)

0

where Kl is constant. VWhen this is multiplied by the
0
Fourier series representation of (f13 + f14) it gives;

2r

-«

Kl(r)(f13 + f14) = Klocos T [ao + a,cos =4 +
4xr 2rr drr
@,C08 == + ... + Blsin T + stin - + ...]
(2.79)
or
2xT 2, 2xr
Kl(r)(f13 + f14) = aoxlocos T+ alKlocos (—T- +
2xr Ayr
aaxlocos T COS == + ... (2.80)
rearranging the second term in equation (2.80);
2,2%®T1 1 4xT
a,K, cos ( T ) = 5 a,K; ( 1 + cos T )
0 0
(2.81)

Therefore the constant part of equation (2.75) becones;

C = A +-§-aK (2.82)

Since the rest of the time periodic terms integrated over

the period still equals zero, the stability can again be

insured by selecting the appropriate K to be used with the

1

time periodic gain. Of course any sine or cosine function

25
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can be used depending on the Fourier ccefficient the designer
wishes to use, The form of equation (2.82) remains the same,
Now suppose there are two unstable modes in equation (2.71).
A scaler control may again be used but the problem becomes
more involved involved., Suppose further that the unstable
characteristic exponents are complex conjugates, Aprlying

the scaler control equation (2,71) becomes;

rxl(f13 + ) +0 K{f g+ f,)+w 0 O
. Kl(f23 + f5,) —w Ky(fyg + £,,) + 0 0 O <
Ky (faz + f34) Kolfgg + £3,) \g ©
[ Ky (f45 + T44) Kolfug + £44) O A,

(2.83)

where ¢ is the real part of the complex conjugate and w is
the imaginary part. Again the stability of modes 14 and 14

are unaffected, The 7, and 7, differential equations are;

1

3
I

(Kl(f13 + f14) + 0) n, + (Kg(f13 + f14) +w) ",
(2.84)

'(Kl(f23 + f24) - w) nyo+ (K2(f23 + f24) +0) ",

Unfortunately this set of equations does not lend itself to
the same method of analysis as the last case. That 1s, an
integrating factor has not been found to solve this set of
equations and thus determine what values of K1 and K2 will
guarantee stability., However equation (2.84) can be written

as a periodic linear system;

7= xX(t) 7 (2.85)
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and then a theorem from Floquet theory, which states (3;236),
T
P19, = expl /' tr lX(s) Ids I (2.86)
0

can offer some help, Here p, are the characteristic nulti-

i
pliers and tr(X) is the trace of the X matrix., Taking the

log of both sides gives;
T
1n(p1p2) = '[o tr‘ X(s), ds (2.87)

from equation (2.84) the trace of the matrix is;

tr lX(s)I = Kl(f13 + f14) + K2(f23 + f24) + 2¢ (2.88)

or breaking it up into constant and periodic parts,

+ K2a + 20) + R(r7) (2.89)

tr Ix(s)l = (Kjay,

23
where the second subscript on the a's represents the coef-
ficient of the Fourier series term yielding a constant part.
These are determined by the form of the gains K1 and K2.
Integrating the periodic part over one period reduces to

zero while the constant part leaves;

ln(plpa) = (Kla1i + K2a23 + 20)7T (2.90)

or by rearranging,

1 1 1 .
Tln(p1p2) = Tlnpl + ¥lnn2 = Klali + Kaaaj + 20 (2.91)

where 1/T 1In P, is recognized as the characteristic exponent

i
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hence,

+ 20 (2.92)

Equation (2.91) does not predict the value of the indivd-
ual characteristic exponents Al and kz, but rather, only
their sum., Naturally their sum needs to be negative for
stability, but making their sum negative does not guarantee
that both values will be negative, It is deireable to be
able to predict what values of K1 and K2 will guarantee both
modes becoming stable, but as of yet this is not possible.
The best that can be done, using scaler control, is to use
the method described, to help search for gains that will
result in a stable system,

There is a method that will predict the value of the
controlled characteristic exponents. This method uses a i
multiple input controller, which enlarges the B and K matrices
of equation (2.70). The following is a demenstration of a %
multiple input control system used to contrcl two unstable |

|
|

modes., First let the B matrix be,

[0 o]
0 0
B = (2.93)
1 0
[0 1]
and the K matrix;




gy e -

Hence,
e 0 0 o ]
N 9 o o o o _
F "BKn =} F n (2,95) [
Kii K12 Ki3 Kqg4 |
| Ko1 Koo Koy %oy |

Therefore the contolled system becomes,

-

PKllfls + K21f14 +o K12f13 + K22f14 +w O O

5o _ | F11Tes * Karfas @ Fiafag * Kopfpa vo 0 0 o
K11%33 * Kp1f3g K12f33 + Koofaa Ay O
| K11%T43 * Kp1%44 Kio%a3 * Kpofyg 0 A,

(2.96)
where setting K13 = K23 = K14 = K24 = 0 gives the above
result. Since the stability of the ks and x4 modes is not
affected by the control, the stability of the controlled kl

and Az is determined by the solution to;

Kiafyp + Kpfyg v0 Kyofyq + Kppfhg velfng ‘
+ K,.f +0 1

3
e

Kipfog + Koyfpy =@ Kiofog 20t 24 "

3
N -

(2.97) r

To determine the values of the K's that will guarantee stab-

ility of the system, first set the off diagcnal terms to zero.

This uncouples the two modes and results in,

Kygfoz + KpTpyg =

Kypfyg + Kppfysg =

solving for Kll gnd K12 gives,
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K

17 = (Cw = Ky £,5,0/853)

(2.99)

K = ((= w - K

12 22%147/%43)

Next, set the diagonal terms to desired constants 'a' and

lbl ’
g+ K _f + X, = 2
11713 21714 (2.100)
+ -
o+ K12L23 + K22f24 = b
solving for K21 and K22 yields;
K = [(a ~0¢) - K,,f ]/f
21 [ | 11713 14 (2.101)
Koo = (B =9) - K12f23]/f24

Using equation (2.99) in equation (2.101) gives the K's as;

wf14 - (a -~ c)f24

Kl = £ f. = f..f
14%23 13724
—wf24 - {(p - d)f14
Kip(7) =
£13%04 = T14%03
(2.102)
(a - d)f23 - wfl3
Koy (7) =
f14T23 = T13%04
K (v) = (b - a)f13 + wf23
2o!7) =

T13%04 = T14%03

These K's are time varying and can be expressed in Fourier

series form. Thus the K matrix with the above values cf K

and the B matrix of equation (2.93) gives the final system;




- C b 0 0 -
! = n (2.103)
0 0 x3 O
A
i 0 o) 0) 4 ]

where a and b are selected to be negative and thus stable,
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CHAPTER 3

RESULTS

In this chapter the results of various examples using
the theory from the last chapter will be presented and
explained. These examples were done using various computer
programs to solve for the equations given in the theory
chapter. These programs also assisted in selecting the con-
trol system to be used, implementing the control, and simula-
ting the results. Presented first is a listing and classifi-
cation of the stability parameters for various uncontrolled
satellite configurations. Next the results of using scaler
control to control a system with two unstable modes, is

presented. Finally the case of two unstable modes is solved

using the multiple input control,

PARAMETER SPACE K vs a
The basic system was expressed in the linear form;

Xt = A(r)X (3.1)

where A(r) is a periodic matrix whose elements are given by
equations (2.26). These elements are functions of the param-~
eters K, «a, and e, Hence the stapility is uniquely determined
by the given values of these three parameters. In the article

by Kane and Rarba (4;405) a parameter space is shown of K
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verses a for various values of eccentricity. In this study

a2 plot of K verses a was made using an eccentricity of 0.5,
The plot originates from a listing of the characteristic
exponents for each pair of K and a coordinates, and also a
classification of the stability represented by those char-
acteristic exponents, These results are listed in Table 3.1,
The system is stabtle if all real parts of the characteristic
exponents are less *than zero, There are many cases where the
real part is equal to zero, or very close to zero, these cases
are considered stable since this represents moticn that is

not increasing without bound. The zero real part is due to
the conservative nature of the system. When the characteristic
exponents are complex, the moction will be oscillatory with the
fregency of oscillation dependent on the size of the real and
imaginary parts., The damping of the system is the nesative

of the real part divided by the natural fregency of the system,
Hence if the real part is negative the damping is pcsitive and
the motion dies out in time, If the real part is positive the
damping is negative and the motion increases with time., The
size of the real part determines how fast the motion either
increases or decreases. For example, a large positive real
part causes the motion to increase faster than a small posi-

tive real part,
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Some paterns from Table 3.1 can be recognized as to the
stability dependence on the parameters K and a«. Specifically
the real part of the characteristic exponents approaches
zero as the K approaches zero, from either the positive or
negative direction. This means the instabilities tecome less
severe. When K equals zero the satellite has the same moments
of inertia in all three axes, (i.,e, J=1 in equation (2,15)).
When XK equals =-1,0 the stability is independent of the spin
rate, This case corresponds to J equalling zero, which is

not realistically possible., When J is nearly zero the mass

of the satellite is distributed very close to the satellite
spin axis. For other values of K, the larger the spin para-
meter, either positive or negative, the instabilities become
smaller, '

From Table 3,1 many of the characteristic exponents are f
in similar form, The only cases that are stable are those r
where the real parts all equal zero. The most prevalent {
unstable case is the one involving two pair of complex con- |
jugates; one set with a negative real part (stable), the i
other set with positive real part (unstable). Another type

of instability is the set with a stable set of complex con-

Jugates and two purely real characteristic exponents; one

stable and one unstable. An example of this case is when

K = 0.8, and «a = -1,0, The third type of instability is when
all the characteristic exponents are real with two of them
less than zero, and two of them greater than zero. A few of

these cases have been difficult to work with due to the




numerical problems in obtaining a periodic solution matrix,
Therefore the characteristic exponents in some of these third
cases may be erroneous.

These different cases are summarized on Figure 3,1, where
the 'o' represents a stable case, 'S' means single unstable

mode, 'C' means complex conjugates unstable case, and 'D’

represents the dual real unstable case,
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CASE STUDY UNCONTROLLED

Yeakel presented the case of cne unstable mode alocng with

a technique to control such a case. A scaler control is

adequate for changing this one unstable characteristic @
exponent to a negative value with predictable results. From

the parameter space of Figure 3,1 it is obvious that the major-

ity of unstable cases involve two unstable modes. As explained
in the theory chapter a scaler control can not predict where
these two unstable characteristic exponents will move.

The stability cannot be insured using a scaler control.
The only method to date has been to use the relationship be-
tween the sum of the characteristic exponents and the integral
of the trace of A(r) in searching for an acceptable set of
gains to be fed back. The case study being looked at has
parameters K = 0.7 and a = 1.0, (e = C.5). This case represents
the most cocmmon type of instability, but the methods used to
control this case along with the results, are apgpplicable to
other similar cases, and to cases where the unstable character-
istic exponents are purely real., The characteristic exponents

for this case are, (uncontrolled);

>
I

= 0,0177 +/- J0.3667 unstable

-0.0177 +/- 30.2667 stable

The motion of the uncontrolled system is shown in Figures




(3.2) thru (3.10). Figures (3.2) thru (3.5) show the motion
of the state variables, defined in equation (2.20)., Figure
(3.6) shows the motion of the angle ¢, which is the angle
between the satellite spin axis and the orbit normal, and is

defined by;

® = arccos( cos@; cosez) (3.2) ]

Figures (3.7) thru (3.10) shows the motion of the modal vari-
ables defined by equation (2.57). The mode) variable motion
can be predicted directly from the characteristic exponents.

The state variable motion is a combination of all the modes.
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CASE STUDY SCALER CONTROL

From Floquet theory of chapter 2, a solution to the

linear system of equation (3.1) is given by;
¥ (r) = F(r)el” (3.2)

where J is given by,

[ 0.0177 0.3667 0.0000 0.0000 ]

~0.3667 0.0177 0.0000 0.0000
J = (3-4)
0,0000 0.0000 ~0.,0177 0.3667

0.0000 0.0000 -0.3667 =-0.,0177 |

The periodic F matrix was found by computer programs which
expressed it in Fourier series form. Each eiement of this
4x4 matrix has 31 cosine terms and 29 sine terms representing

its function. A typical element is,

fll(r) = 0,00 - 0,3239 cos(2x7/T) + 0,00 + 0,0688 cos(6xr/T)
+ ... + 0,0004 cos(60xrr/T) - 0,1259 sin(2xr/T)
+ 0.00 - 0.0326 sin(67x7/T) + ... +

0.00001 sin(58%+/T)

where T is the period of the orbit.
Using scaler control puts equation (2.65) into the form of
equation (2.83). Controlling the unstable modes reduces

equation (2.83) to the 2x2 system of equation (2.84), The

g1
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trace of the matrix of this 2x2 system, used in equation

(2.86), is given by;
— »
Rl + k2 = 2¢ + Kl(f13 + ‘14) + K2(f23 + f24) (3.5)

where the f values in equation (3.5) are the Fourier coeffic-
ients of the terms which yield constant parts, For this case
the zeroth cosine terms (the constant parts) of the Fourier

series are too small to be adequately amplified for contrcl.

However the first cosine coefficients are;

f13 = 0,0 - 1,0027 cos(2r7/T)
f14 = 0.0 + 0.2689 cos(2x7/T)
(3.6)
f23 = 0,0 + 0,2919 cos(2xr/T)
f24 = 0.0 + 0.1128 cos(2%x+/T)

Making the gains time periodic fuhctions such that,

K, (r)

| K,(7)

Glcos(ewr/T)
(3.7)

G2cos(27r/T)

s _rish b

where the C's are the constant gain values yet to be deter-

mined, Now using equation (3.7) and (3.6) in equation (3.3)

the constant terms become;

R Ty ey

Q@ =N +1r, = 2(0.0177) + cl(-o.sesg) + a2(0.2024)
(3.8)
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Rearranging the terms in equation (3.8) to express the gairs

in a ratio gives;

Q = 0.02%24 + G,(-0.3669 + O.2024(G2/Gl)) (3.9)

1(
The form of equation (3.9) allows a specific g2zin ratio to be
selected and then a value of G1 to be varied to achieve desired .

values of @, the sum of the controlled characteristic expo-

nents. As an example, for the ratio of R = -3.0, if Gl = 1,0
then G2 = -3,0., From equation (3.9) Q@ becomes,
Q= 0.0354 + (1,0)(~0.3669 + 0.,2024(-3.0)) = -0,9387

Using Floquet theory the new characteristic exponents of the

controlled system are,

Xl = -0,6883 kz = =0,2485

where the sum of these characteristic exponents is -0,9368,
These values show the system has been stabilized, and since
they are purely real there is no oscillation in these modes,

There is still oscillation in the other set of stable char-

acteristic exponents, hence the angle ¢ oscillates as shown

in Figure (3.11). For the same ratio R = -3.0, if G, = 0.8

=t

then G, = -1.8 and the predicted sum would be -0.5491 and ;

the new characteristic exponents are,

A = =0.2742 +/- 30.1432
1,2
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where the sum is -0,5484, The plot of ¢ for this combination

of gains is shown in Figure (3.12). Here there are more
oscillations due to the imaginary part of the new character-
istic exponents. These two cases both exhibit stable tehavior,
However, in general for cases such as these, stability is not
assured and each case must be evaluated.

By varying the G, for specific ratios, a locus of character-

1
istic exponents can be plotted, For different ratios these
plots represent a family of curves. These are shown for the
case being studied in Figures (3.13) thru (3.18). DNote that
all curves originate at the unstable uncontrolled character-
istic exponents, As the gain is increased from zero, the
locus cross the imaginary axis and become stable, This cross-
over occurs when the trace of the 2x2 system is equal to zero,
The locus then breaks in at some point on the real axis and
splits, one branch heads toward negative infinity, and the
other branch heads toward the origin, This break in point is
very important because it can be thought of as the most statle
placement for the controalled characteristic exponents, as will
be seen. From Figure (3.13) the break in point for a ratio

of 0.5 occurs around -0.02, and from Figure (3.16), the ratic
of -10.0, the break in point is around -0.35. If the charact-
eristic exponents lie anywhere in the left half plane, they
represent a stable configuration. Obviously the closer they

are to the real axis, the less the oscillation, and the further

they are from the imaginary axis the quicker the motion dies

out, The break in point is the point that is furthest from the
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FIGURE 3,13 - Locus of Characteristic
Exponents for R = 0.5
} 0.2 e: G1= 0,0
A Gl= 0.,25%
f : t 3 GI= 0.5
0.1
$ . > o . = o g
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FIGURE 3.14 -~ Locus of Characteristic
Exponents for R = -0,5
. 0.2 e: G1= c.,0
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e % ¢ G1= 0.6
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40
TIGURE 3.15 - Locus of Characteristic
Exponents for R = 3,0 L
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~ Locus ¢of Characteristic

Exponents for R = -10,0

A + + — + N 4
-0.4 -0.3 -0,2 -0.1 0.0 0.1

FIGURE 3.17 - Locus of Characteristic

Exponents for R = -20,0

e

~0.4 -0,3 -0.1

FIGURE 3,18 - Locus of Characteris

Exponents for R = -50.0




imaginary axis and closest to the real axis for both sets of

controlled characteristic exponents,
CASE STUDY NULTIPLE INPUT CONTROL

The scaler control used to stabilize a system with two
unstable modes is desireable due to the simplicity of the feed-
back gains used. However since there is no way to accurately
predict the placement of the controlled characteristic expcn-
ents, another method is needed. The multiple input control
system provides more predictable results. Again controlling
the unstable modes results in the system described by equation
(2.97). The time varying gains were found using equations
(2.102). These gains are expressed as Fourier series. The

new characteristic exponents were chosen to be;
AN, = =0.75 A\, = -0,50 (3.10)

A computer program found the Fourier series for the gains

K K21' and K22 that would result in the characteristic

11 %120
exponents of equation (3.10). An example of the time varying

gains 1is;

Kll(') = =1,243 cos(2%7/T) + 0.625 cos(6x7r/T) + ...

-2,742 sin(2*r/T) - 0.111 sin(éwrr/T) (2.11)

where T is the period of the orbit. A summary of the gain
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Fourier coefficients for this case is listed in Table (3.2),
The gains given in this case yield the new characteristic

exponents of;

N, = -0.78685 k2 = =-0,4777

where the error from the predicted values, is due to the num-
erical inaccuracies of the computer, Iore accurate results
woculd have been achieved if the Fourier series had heen taken
to more coefficients. The ¢ plot for this set of gains is
given in Figure (3.19).

Ilow if the new characteristic exponents were desired toc bte

at;

kl = -2,00 kz = =1.50

the Fourier series of the gains would be as listed in Table

(3.3), and the resulting characteristic exponents would be at;

A, = =2.285 A, = -1.318

The ¢ plot for these gains is shown in Figure (3.20).
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TABLE 3.2 - GAIN FUNCTION FOR MULTIPLE CCONTROL CASE 1

cosine
terms;

A

I R -
H O v e

”~
-
S
(]
W40

0.8419
-1,2429
-0.5849

0.6248
-0,5868

1.4044
-0.1008
-1,2509

0.1498

-2,1042

~2,7417

0.1118

-0.1112

0.2076
-0.3721
-0.1006

3.2091
-0,.5102
-2.3053

0.9814

A

n

E-7

E-6

cos(2(n-1)xr/T) +

12

0.6213
-0,6862
-0.1414

1.3368
-0.4116

1.6458
-0.5761
-0,3723

0.1258

-0,6031

-1.6274
0.8622
-0.1777
0.1988
0.2358
-0.9000
1.5700
~0,2927
~0.86€08
0.7360

E-6

21

6.1676
-0.5508
0.6755
1.4945
-0.8632
1.6669
0.3726
0.5329
0.2521

-0.3944

-0,3833
0.6379
-1,5967

0.1357

10

z
m=1

B

E-7

E~1

E-7

t

-7

2,0491

-0,.5690
0.2321
-0,28555
0.7180
0.5153

E-1
E=-7

m

sin(2mwxr/T)

22

0.3428
-1.1693
G.1566
-0.2849
~0.9058
-0,2662
0.517¢
~0,4886
0.2683
~0,6961

0.213%
0.4292
-1.,2184
0.1058
0.,2833
-0.4547
-0.1490
-0.2070
-0.3420
0.4196

E=-7

E-8

E-7

E-7
E-1
E=-7
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TABLE 3,3 ~ GAIN FUNCTION FOR MULTIPLE CONTROL CASE 2

Kij(r) = s Al cos(2(n-1)xr/T) + Ig) B sin(2mx+/T)
n=1 m=1
K11 K12 Ka1 Koo
cosine
terms;
A1 00,2403 E-6 0.1500 E-6 00,4410 E-7 0.4434 E-8
A2 -3.4555 -1,5559 -0.6102 -3,3138
A3 -0,1553 E-6 -=0,2150 E-7 0.1791 E-6 0.2293 E-7
A4 2.1350 3.6081 3.708% -1,2916
A5 -0.1667 E-6 -0,9843 E-7 -0.2572 E~6 -0,2303 E-6
: A6 4,2537 4,2380 4.,1580 -1.2936
é A7 -0,2811 E-6 -0,1318 E;6 0.9740 E~7 0.2793 E-8
% A8 -3.3500 -0.6592 1.1674 -1.5632
{ Ag 00,4338 E-6 0.3102 E-6 0.6560 E~7 =0,4223 E-9
| AlO -5.6257 -1.6427 -1.3700 -2.42863
sine
terms;
81 -7.6279 -3.4714 0.7585 E-1 0.6094
B2 0.3208 E-6 0.2097 E-6 0.1804 E-6 0,1018 E-&
B3 -0.3559 -0.4705 -4,5742 -2.9586 %
B4 0.6108 E=-7 0.4998 E=7 0.3896 E-7 0.2578 E-7 g
BS -0.8576 0.7912 5.6375 2.1437
B6 -0,2935 F-6 -0,2241 E-6 -=0.1689 E-6 -0,1106 E~6
B, 8.8409 3.4427 -0.3819 E-3 -0.4319 i
BB -0.1422 E-6 -0.6702 E-7 -=0.7368 E-7 -0,5076 E-7
: B9 -6,2437 -1.7123 1.8233 -0.3279
B 0.2806 E=6 0,1782 E-6 0.1487 E-6 0.1030 E-6
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CHAPTER 4

CONCLUSIONS

There are some important conclusions which can be drawn

from the results presented in the previous chapter. Foremost

is the contrast between the scaler control and the multiple

input control. The use of these two control schemes in
simultaneously moving two unstable characteristic exponents
was demonstrated in the results section. The problem of
moving twc roots simultaneously is of particular importance

to satellite designers, due to the number of cases where two,

or more, unstable modes exist., In this study the case where
there are two unstable modes was shown to outnumber the cases
of one unstable mode, It would be overly restrictive to
limit satellite designs to only those cases of zero or one
unstable mrde, In cases with multiple unstable modes a
scaler cor:trol may be applied repetitiously to contrel a
single mode at a time. This involves applying a scaler con-
trol to the original system to take care of one mode, then
forming a new "semicontrolled" system to which another scaler
control is applied. This prccess is continued until all modes

are controlled as desired., The probtlem here is that the

numerical difficulties quickly make this scheme unworkable,
The primary emphasis of this study has been to develop a

workable scheme to control a periodic system with two unstable

modes, From the results presented it is obvious the two types

of controllers offer significant differences in achieving
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this control. The scaler control works with simple workable
feedback gains, but does not offer predictable results, The
multiple input control system offers predictable results as

to the placement of the new stable characteristic exponents,
but requires complicated gains which are time dependent. The
greater the accuracy desired in the placement of the charact-
eristic exponents, the more complicated the gain time functions
become, These complicated gains are unavoidable in the multiple
input controller. Therefore the problem becomes, how to predict
the placement of the characteristic exponents using the scaler
control.

The only clue in predicting the results of the scaler
controller comes from the relation between the characteristic
exponent's sum and the trace of the matrix defining the sys-
tem. Through the use of the theorem given ty eguation (2,86)

a locus of controlled characteristic exponents was plotted.
From this plot there can be found a breakin point unique

for a given gain ratio. If this breakin point can be predicted
the problem will be effectively solved. Alsc from these rlots
1t is obvious that some optimum ratio exists that gives the
most negative breakin point for the system, As was discussed
the breakin point can be thought of as the most stable con-
trolled point. More negative values of one characteristic
exponent can be achieved, but it requires the second charact~
eristic exponent to be less negative., Hence the breakin point
for the optimum ratio represents the most desireabtle location
of the controlled characteristic exponents. As of yet there

is no clear way to predict breakin points or even the optimum

€6




ratio.
If a less specific solution is desired, that is one that
is simply stable and not necessarily the most stable, ther.

the imaginary axis crossings must be predicted. For cases

similar to the one presented, ( that is one with negative

breakin points), the first imaginary crossing, as the gain
is increased from zero, occurs when the sum computed from
the trace theorem, is equal to zero. The second crossover
occurs as one branch heads toward the origin after breaking
into the real axis. This crossover was difficult to find
using computer numerical integration. Whether a crossover
actually occurs at the origin is still unclear. These two
crossover points define the region where the system is

guaranteed stable,
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